170 research outputs found

    Elementary processes governing the evolution of road networks

    Get PDF
    Urbanisation is a fundamental phenomenon whose quantitative characterisation is still inadequate. We report here the empirical analysis of a unique data set regarding almost 200 years of evolution of the road network in a large area located north of Milan (Italy). We find that urbanisation is characterised by the homogenisation of cell shapes, and by the stability throughout time of high-centrality roads which constitute the backbone of the urban structure, confirming the importance of historical paths. We show quantitatively that the growth of the network is governed by two elementary processes: (i) `densification', corresponding to an increase in the local density of roads around existing urban centres and (ii) `exploration', whereby new roads trigger the spatial evolution of the urbanisation front. The empirical identification of such simple elementary mechanisms suggests the existence of general, simple properties of urbanisation and opens new directions for its modelling and quantitative description.Comment: 10 pages, 6 figure

    Density-dependence of functional development in spiking cortical networks grown in vitro

    Full text link
    During development, the mammalian brain differentiates into specialized regions with distinct functional abilities. While many factors contribute to functional specialization, we explore the effect of neuronal density on the development of neuronal interactions in vitro. Two types of cortical networks, dense and sparse, with 50,000 and 12,000 total cells respectively, are studied. Activation graphs that represent pairwise neuronal interactions are constructed using a competitive first response model. These graphs reveal that, during development in vitro, dense networks form activation connections earlier than sparse networks. Link entropy analysis of dense net- work activation graphs suggests that the majority of connections between electrodes are reciprocal in nature. Information theoretic measures reveal that early functional information interactions (among 3 cells) are synergetic in both dense and sparse networks. However, during later stages of development, previously synergetic relationships become primarily redundant in dense, but not in sparse networks. Large link entropy values in the activation graph are related to the domination of redundant ensembles in late stages of development in dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue in vivo.Comment: 10 pages, 7 figure

    The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 26K topics and 226K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO we have developed the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO at different levels. Users can use the portal to rate topics and relationships, suggest missing relationships, and visualise sections of the ontology. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various communities engaged with scholarly data

    Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools

    Get PDF
    Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to "zero-tolerance" policies by unveiling the crime and/or property types most likely to affect each other

    High modularity creates scaling laws

    Get PDF
    Scaling laws have been observed in many natural and engineered systems. Their existence can give useful information about the growth or decay of one quantitative feature in terms of another. For example, in the field of city analytics, it is has been fruitful to compare some urban attribute, such as energy usage or wealth creation, with population size. In this work, we use network science and dynamical systems perspectives to explain that the observed scaling laws, and power laws in particular, arise naturally when some feature of a complex system is measured in terms of the system size. Our analysis is based on two key assumptions that may be posed in graph theoretical terms. We assume (a) that the large interconnection network has a well-defined set of communities and (b) that the attribute under study satisfies a natural continuity-type property. We conclude that precise mechanistic laws are not required in order to explain power law effects in complex systems—very generic network-based rules can reproduce the behaviors observed in practice. We illustrate our results using Twitter interaction between accounts geolocated to the city of Bristol, UK

    A universal model for mobility and migration patterns

    Get PDF
    Introduced in its contemporary form by George Kingsley Zipf in 1946, but with roots that go back to the work of Gaspard Monge in the 18th century, the gravity law is the prevailing framework to predict population movement, cargo shipping volume, inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of phenomena affected by mobility and transport processes.Comment: Main text and supplementary informatio

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system

    The Collaborative Image of The City: Mapping the Inequality of Urban Perception

    Get PDF
    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities.MIT Media Lab Consortiu

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Network Centrality of Metro Systems

    Get PDF
    Whilst being hailed as the remedy to the world’s ills, cities will need to adapt in the 21st century. In particular, the role of public transport is likely to increase significantly, and new methods and technics to better plan transit systems are in dire need. This paper examines one fundamental aspect of transit: network centrality. By applying the notion of betweenness centrality to 28 worldwide metro systems, the main goal of this paper is to study the emergence of global trends in the evolution of centrality with network size and examine several individual systems in more detail. Betweenness was notably found to consistently become more evenly distributed with size (i.e. no “winner takes all”) unlike other complex network properties. Two distinct regimes were also observed that are representative of their structure. Moreover, the share of betweenness was found to decrease in a power law with size (with exponent 1 for the average node), but the share of most central nodes decreases much slower than least central nodes (0.87 vs. 2.48). Finally the betweenness of individual stations in several systems were examined, which can be useful to locate stations where passengers can be redistributed to relieve pressure from overcrowded stations. Overall, this study offers significant insights that can help planners in their task to design the systems of tomorrow, and similar undertakings can easily be imagined to other urban infrastructure systems (e.g., electricity grid, water/wastewater system, etc.) to develop more sustainable cities
    corecore